

A-LEVEL Mathematics

Statistics 3 – MS03 Mark scheme

6360 June 2015

Version/Stage: 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS03

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks
- **GN3** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks
- GN4 Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy** mark at the first **correct** answer but only if no indication of percentage is shown
- **GN5** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds
- **GN6** Accept decimal answers, providing that they have at least two leading zeros, in the form $c \times 10^{-n}$

	C - I - 4°	M1	T-4-1	C
Q	Solution	Marks	Total	Comments
1(a)	$r = \frac{3095}{\phantom{0000000000000000000000000000000000$	M1		Numerical expression
	$r = \frac{3093}{\sqrt{7410 \times 1642}} = \underline{0.887}$	A1		AWRT (0.88729)
	or			
	r = 0.887	(B2)		AWRT
	r = 0.88 to 0.89	(B1)		AWFW
	. 3.00 10 3.05	()	2	
Note	1 $\sum x = 3036$ $\sum x^2 = 775518$ $\sum xy = 561719$ $\sum y =$	$2208 \sum y$	$r^2 = 407914$	$\overline{x} = 253$ $\overline{y} = 184$
(b)				
, ,	11 0			Both; do not accept in terms or <i>r</i>
	H_0 : $\rho = 0$	B1		but accept in words providing clear
	$H_1: \rho > 0$			indication of population pmcc
	SL $\alpha = 0.01 (1\%)$			
	CV $r = (+)0.658$ to $(+)0.6581$	B1		AWFW (0.6581)
				,
		3.61		Comparison; can be implied by
	Calculated $r > $ Tabulated r	M1		conclusion
	Evidence, at 1% level, of a positive correlation			
	between the right foot length and right hand	A T-1		F on r and CV
	length of males aged between 19 years and 25	AF1		OE in context
	years			
			4	
Note	1 For H ₁ : $\rho \neq 0$ then CV $r = (\pm)0.7079$ so same cond	clusion ⇒	B0 B0 M1	AF1
		Total	6	

Q	Solution	Marks	Total	Comments
2(a)	99% $\Rightarrow z = 2.57 \text{ to } 2.58$	B1		AWFW (2.5758)
	CI for 26 weeks is:			(507 416)
		M1		$(507-416) \pm z\sqrt{a}$
	$(507 - 416) \pm 2.5758\sqrt{507 + 416}$	m1		$z\sqrt{507+416}$
	ie	A1		Correct expression; $2.32 \le z \le 2.58$
	$91 \pm (78 \text{ to } 78.5) \text{ or } (12.5 \text{ to } 13, 169 \text{ to } 169.5)$			
	Dividing by 26 gives: 3.5 ± 3.0 or $(0.5, 6.5)$	M1 A1		CAO/AWRT or AWRT
	OR			
	99% $\Rightarrow z = 2.57 \text{ to } 2.58$	(B1)		AWFW (2.5758)
	CI for 1 week is:	(B1)		19.5 & 16
	$\left(\frac{507}{26} - \frac{416}{26}\right) \pm 2.5758\sqrt{\frac{507}{26^2} + \frac{416}{26^2}} =$	(M1)		$(19.5-16.0) \pm z\sqrt{b}$
	$(19.5 - 16.0) \pm 2.5758 \sqrt{\frac{19.5}{26} + \frac{16.0}{26}}$	(m1)		$z\sqrt{\frac{35.5}{26}}$ or $z\sqrt{35.5}$
		(A1)		Correct expression; $2.32 \le z \le 2.58$
	ie 3.5 ± 3.0 or $(0.5, 6.5)$	(A1)	6	CAO/AWRT or AWRT
(b)	Since CI is above 0	B1		OE; providing CI > 0
	Emilia's belief is justified	Bdep1	2	Dependent on B1; OE in context
		Total	8	

Q	Solution	Marks	Total	Comments
3	S: 0.55 L: 30 VL: 0.15	TYTETING	Total	In (a)(i) & (iv), accept any equivalent fractional answer with den ≤ 100 or the equivalent percentage answer with %- sign (see GN4)
(a) (i)	$P(S \cap £1) = 0.55 \times 0.20 = 0.11$	B1	(1)	CAO
(ii)	$P(£0) = (0.55 \times 0.70) + (0.30 \times 0.65) + (0.15 \times 0.55)$	M1		>1 term correct; may be implied
	= 0.385 + 0.195 + 0.0825 = 0.662 to 0.663	A1	(2)	AWFW (0.6625)
(iii)	$P(L \mid £0) = \frac{P(L \cap £0)}{P(£0)} = \frac{0.30 \times 0.65}{(ii)}$	M1		May be implied
	$= \frac{0.195}{0.6625} = \underline{0.294 \text{ to } 0.295}$	A1	(2)	AWFW (0.29434)
(iv)	$P(VL \mid > £0) = \frac{P(VL \cap > £0)}{P(>£0)} = \frac{0.15 \times 0.45}{1 - (ii)}$	M1 M1		Numerator Denominator
	$= \frac{0.0675}{0.3375} = \underline{0.2}$	A1	(3)	CAO
a >			8	
(b)	$P((S \cap L \cap VL) \mid > £0) =$ $\frac{0.55 \times 0.30}{0.3375} \times \frac{0.30 \times 0.35}{0.3375} \times \frac{0.15 \times 0.45}{0.3375} \times 6 =$ $\frac{0.165 \times 0.105 \times 0.0675 \times 6}{0.3375^3} = \frac{0.0011694375 \times 6}{0.3375^3}$ or $= \frac{22}{45} \times \frac{14}{45} \times \frac{9}{45} \times 6 = \frac{16632}{91125} = \frac{616}{3375}$ $= \underline{0.182 \text{ to } 0.183}$	M1 M1 m1	4	>1 term correct in numerator (1 – (ii)) in denominator 6 or 3!; must have at least one M1
			4	, ,
		Total	12	

4(a) $H_0: p = 0.60 (60\%)$ $H_1: p \neq 0.60 (60\%)$ $B1$ $Both$ $5\% \Rightarrow z = 1.96$ $p = \frac{164}{250} = 0.656$ $B1$ $AWRT$ CAO $Allow use of 0.656 in denominator D = 1.8 \text{ to } 1.81 D $	inator
$\hat{p} = \frac{164}{250} = 0.656$ $z = \frac{0.656 - 0.6}{\sqrt{\frac{0.6 \times 0.4}{250}}}$ B1 CAO Allow use of 0.656 in denom Correct denominator $= 1.8 \text{ to } 1.81$ A1 AWFW	inator
$z = \frac{0.656 - 0.6}{\sqrt{\frac{0.6 \times 0.4}{250}}}$ $= 1.8 \text{ to } 1.81$ Allow use of 0.656 in denominator AWFW	inator
= 1.8 to 1.81 A1 AWFW (
$=$ $\mathbf{I} \times \mathbf{f} \cap \mathbf{I} \times \mathbf{I} \setminus \Delta \setminus \mathbf{I} $	
	1.80739) > 0.05)
No evidence, at 5% level, to suggest percentage is not 60% or is different AF1 F on z and CV OE in context	
Notes 1 $(0.656 - 0.6)/\sqrt{((0.656 \times 0.344)/250)} = 1.86392 \Rightarrow (B1) (B1) (B1) M1 m0 A0 (AF1)$ 2 $((163.5 \text{ or } 164) - 150)/\sqrt{60} = 1.74284 \text{ or } 1.80739 \Rightarrow (B1) (B1) (B1) M1 m1 A1 (AF1)$ 3 $(164.5 - 150)/\sqrt{60} = 1.87194 \Rightarrow (B1) (B1) (B1) M1 m0 A0 (AF1)$ 4 $((163.5 \text{ or } 164 \text{ or } 164.5) - 150)/\sqrt{56.416} = 1.79735 \text{ or } 1.86392 \text{ or } 1.93049 \Rightarrow (B1) (B1) (B1) M1 m0 A0 (AF1)$ 5 $P(X \ge 164 \mid B(250, 0.6)) = 0.039794 > 0.025 \Rightarrow (B1) B4 M1 (AF1)$	
(b) $H_0: p = 0.25 (25\%) \\ H_1: p < 0.25 (25\%)$ B1	
Use of B(40, 0.25) M1 May be implied	
$P(X \le 5) = 0.043 \qquad A1 \qquad AWRT$	(0.0433)
Calculated p -value < 0.05 (5%) M1 Comparison of p -value and 0).05
Evidence , at 5% level, to suggest percentage is less than 25% AF1 F on p-value and 0.05 OE in context	
Notes 1 $P(X \le 4) = 0.0160$ and $P(X \le 6) = 0.0962$ 2 Use of normal approximation \Rightarrow B1 max	
(c) $98\% \Rightarrow z = 2.32 \text{ to } 2.33$ B1 AWFW	(2.3263)
$z\sqrt{\frac{p(1-p)}{n}} = 2.3263\sqrt{\frac{0.3\times0.7}{n}} < 0.05$ Allow use of $p = 0.5$, (×2) of $z = 2.05$ to 2.33	&
$n > \frac{2.3263^2 \times 0.21}{0.05^2} = \frac{\textbf{450 to 460}}{0.05^2} \text{m1}$ Attempt at solution for n AWFW; must be an integer	(455)
Note 1 Use of $p = 0.5$ gives $n = 541.2$ so 535 to 545 (AWRT) \Rightarrow B1 M1 AF1 M1 A0	
Total 17	

Q 5	Solution	Marks	Total	Comments
5 (a)(i)	$E(X) = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} =$	M1		Used; ignore limits until A1
	$np\sum_{x=1}^{n-1}\frac{(n-1)!}{(x-1)!(n-x)!}p^{x-1}(1-p)^{n-x} =$	M1		≥ 2 of: factor of np plus p^x to p^{x-1} , $n!$ to $(n-1)!$ and $x!$ to $(x-1)!$
	$np\sum_{x=1}^{n-1}B(n-1, p) = np$	A1	3	Fully complete and correct derivation AG
(ii)	$Var(X) = E(X^{2}) - n^{2} p^{2}$ $E(X(X-1)) = E(X^{2}) - np = n(n-1) p^{2}$ so	M1		Both used; OE
	$Var(X) = n(n-1)p^2 + np - n^2p^2 = \underline{np(1-p)}$	A1	2	Fully complete and correct derivation
Notes	1 $E(X(X-1)) = E(X^2) - np = V(X) + n^2p^2 - np = n(n-1)p^2$ 2 $E(X^2) = n^2p^2 - np^2 + np \Rightarrow V(X) = n^2p^2 - np^2 + np - np^2$	$p^2 \Rightarrow V(X)$ $p^2p^2 = np(X)$	$(1-p) \Rightarrow$	p) ⇒ M1 A1 M1 A1
(b)(i)	$\frac{\text{Var}(Y)}{\text{E}(Y)} = \frac{np(1-p)}{np} = 1 - p = \frac{2.985}{3} = 0.995$	M1	γ, ,	ОЕ
	$p = 0.005$ and so $n = \frac{3}{0.005} = 600$	A1 A1	3	CAO both
(ii)	$\frac{\text{Var}(U)}{\text{E}(U)} = \frac{np(1-p)}{np} = 1 - p = \frac{6.25}{5} = 1.25$	M1		OE
	$\Rightarrow p < 0 \text{ or } (1-p) > 1 \text{ which is impossible}$	A1	2	Indication that $p < 0$ or $(1-p) > 1$
(c)	$E(W) = 2 \times 5 + 10 = 20$	B1		CAO; must be justified
	$Var(W) = 2^2 \times 5 = 20$	B1		CAO; must be justified
	No odd values or no values < 10	B1	3	Either
(d)	$n = 5000 \& p = 0.002 \Rightarrow Po(10)$	B1		
	$P(6 \le AB - \le 12) = 0.7916 - (0.0671 \text{ or } 0.1301)$	M1		
	= 0.724 to 0.725	A1	3	AWFW (0.7245)
Note	1 Use of normal approximation ⇒ B0 M0 A0	Total	16	
		Total	10	

Q	Solution	Marks	Total	Comments
6 (a)	$\operatorname{Var}(\overline{L} - 2\overline{S}) = \operatorname{Var}(\overline{L}) + 2^{2} \operatorname{Var}(\overline{S})$	M1		Use of $+$ and 2^2
	but $\operatorname{Var}(S) = \operatorname{Var}(L) = \sigma^2$ so $\operatorname{Var}(\overline{S}) = \operatorname{Var}(\overline{L}) = \frac{\sigma^2}{n}$	M1		Use of $\frac{\sigma^2}{}$
	so $\operatorname{Var}(S) = \operatorname{Var}(L) = \frac{s}{n}$ giving $\operatorname{Var}(\overline{L} - 2\overline{S}) = \underline{5} \frac{\sigma^2}{n}$	M1 A1		Use of — n CAO
	,		3	
Note (b)	1 Answer of $3\sigma^2/n \Rightarrow M0 M1 A0$			
(b) (i)	$H_0: \ \mu_L = 2\mu_S H_1: \ \mu_L > 2\mu_S$	B1 B1		Award B1 B0 for $\mu_L = \mu_S$
	$10\% \implies z = \underline{1.28}$	B1		AWRT (1.2816)
	$z = \frac{522 - (2 \times 258)}{2}$	M1		Numerator; allow (522 – 258)
	$z = \frac{522 - (2 \times 258)}{\sqrt{\frac{5 \times 8^2}{25}}}$	M1		Denominator; allow $\sqrt{2 \times 8^2/25}$ OE or $\sqrt{3 \times 8^2/25}$ OE
	= <u>1.68</u>	A1		AWRT (1.67705)
	Evidence , at 10% level, to suggest that $\mu_L > 2\mu_S$	Adep1	7	Dep on A1 OE in context
(ii)	CV is given by $\frac{\overline{l-2s}}{\sqrt{\frac{5\times8^2}{25}}} \text{ or } \frac{\overline{l-2s}}{\sqrt{12.8}} = 1.28(16)$	M1		Completely correct equality
	ie $CV = 4.585$	A1	2	AWRT; AG (4.58519)
(iii)	$P(\text{Type II error}) = P(\text{accept H}_0 \mid \text{H}_0 \text{ false})$	B1		OE; stated or used
	$= P(\overline{L} - 2\overline{S} < 4.585 \mu_L - 2\mu_S = 10) =$			
	4 585 – 10	M1		Must have correct numerator Denominator; allow $\sqrt{2 \times 8^2/25}$ OE
	$P\left(Z < \frac{4.585 - 10}{\sqrt{\frac{5 \times 8^2}{25}}}\right) = P(Z < \pm 1.51)$			or $\sqrt{3\times8^2/25}$ OE
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A1		AWRT (-1.51354)
	= <u>0.064 to 0.066</u>	A1	4	AWFW (0.06504)
		Total	16	
		1 otai	10	